

MODEL ALR-1

PRESSURE REDUCING REGULATOR WITH UNLOADER FOR AUXILIARY SUPPLY

OVERVIEW

Model ALR-1 is high performance, pressure loaded diaphragm-type, flow-to-open pressure reducing regulator. Design includes an internal pressure balancing piston-cylinder that provides high flow capacity and high pressure drop capability. The internal trim design allows the same basic unit to cover a broad range of pressure settings. Performance meets or exceeds that of competitive pressure loaded or pilot-operated designs. A back pressure regulator or "unloader" is piped to the top of the dome and is "set" to control the outlet pressure of the pressure reducing regulator.

FEATURES

Versatile: Five basic materials and multiple trim

material combinations to select from. Multiple methods of pressure loading.

Tight Shutoff: Multiple composition materials provide

Class IV or VI inboard leakage rates. Designed as a soft-seated valve.

Capacity: Highest in the industry. Allows smaller

body sizes than competitors in majority of

applications.

Droop: Highly accurate outlet pressure control,

due to absence of range spring in design, provides almost zero "droop effect".

Trim Design FTO and pressure balancing allows

for higher inlet pressure. Results in unmatched <u>sensitivity</u> and <u>stability</u>. Internals are <u>cage</u>-contained within easily removable <u>quick change trim</u>.

Rangeability: Basic valve gives outstanding rangeability due to close tolerances, balanced trim,

and a broad range of elastomeric and metallic diaphragms and soft seats. Can

be as high as 2000:1.

Heavy-DutyBoth top and bottom guided to maintain **Guiding:**stability and increased diaphragm life.

Failure Position: Fails closed on loss of loading pressure.

APPLICATIONS

Designed as a gaseous service regulator. Excellent for atmospheric industrial gases - $\rm GN_2$, $\rm GOX$, Ar, He, $\rm H_{2,}$ $\rm CO_2$. Can be used as a utilities air regulator.

A CAUTION

IN THE EVENT OF DIAPHRAGM FAILURE, THE PROCESS FLUID WILL MIX WITH THE LOADING FLUID

MODEL ALR-1

LINE SIZES AVAILABLE

1/2" (DN15), 3/4" (DN20), 1" (DN25), 1-1/4" (DN32), 1-1/2" (DN40), 2" (DN50), 2-1/2" (DN65), 3" (DN80), 4" (DN100)

END CONNECTIONS

NPT, FLANGED, BSPT

COMMON APPLICATIONS

ATMOSPHERIC INDUSTRIAL GASES - $\mathrm{GN}_{2,}$ $\mathrm{GOX},$ $\mathrm{Ar},$ $\mathrm{He},$ $\mathrm{H}_{2},$ CO_{2}

DESIGN PRESSURE

MAX. OPERATING: 525 psig (36.2 Barg) OUTLET: 2-400 psig (0.13-27.6 Barg)

STANDARD / GENERAL SPECIFICATIONS

Body / Cover Dome Materials

DI/DI BRZ/BRZ SST/DI CS/DI BRZ/DI SST/CS

CS/CS SST/SST

DI = Ductile Iron CS = Carbon Steel BRZ = Bronze SST = Stainless Steel

Body Sizes

1/2", 3/4", 1", 1-1/4", 1-1/2", 2", 2-1/2", 3", 4". (DN15, 20, 25, 32, 40, 50, 65, 80, 100)

End Connections

Standard: Female NPT.

ASME Flanged: 125#, 150#, 250#, 300#, 600#;

DIN Flanged: PN16, PN25, PN40;

(Integral Flanged Body unless listed under Opt.-30)

Opt-31: British Standard Pipe Threads. Opt-34: 14" Face to Face Flange Dimension.

Max. Useable Cv

See TABLE 7 for Wide Open Cv Limits.

Body	Size	Comp. Body Size	Body Size		Comp.
in	(DN)	Cv	in	(DN)	Cv
1/2"	(15)	3.6	2"	(50)	54
3/4"	(20)	7.2	2-1/2"	(65)	81
1"	(25)	13.5	3"	(80)	108
1-1/4"	(32)	20.7	4"	(100)	198
1-1/2"	(40)	27.0			

METRIC CONVERSION FACTOR: Cv / 1.16 = kv

Max Operating Pressure

525 psig (36.2 Barg). See TABLES 1A through 1F for design P vs. T limits.

Outlet Pressure Range

2.0 - 400 psig (0.13 - 27.6 Barg).

Multiple spring - ranges dependent on selection of the unloader. See Position 13 of the coder.

Function of diaphragm material. See TABLE 6.

Pressure Drop Limits

5–355 psid (.34 – 24.5 Bard) Function of service fluid, base trim material, diaphragm and dynamic seal design. See TABLES -2,

-3. -4 & -6.

Temperature Range

-50° to +400°F (-46° to +204° C)

Limited by body/cover dome/diaphragm material combinations, and by elastomeric seat, static seal, dynamic seal-materials. See TABLE 1A through 1F and TABLE 5. <u>Alternate</u> "CS" Mat'l - Steel - ASTM A352 Gr. LCC - Minimum temperature -50 °F (-46 °C).

Inboard Leakage Rate

See TABLE 10

Lower Piston Spring

No lower piston spring; $P_2 = P_{Load}$. Lower piston spring required; $P_2 < P_{Load}$. See TABLE-9 for available spring ranges.

NOTE: Use a lower piston spring with the following applications:

1. When decaying inlet may reach 0 psig.

Optional Constructions

Opt-30: Weld-on Flanges Opt-56: Special Cleaned Opt-31: BSP End Conns. Opt-85: Extra Set Pressure

Opt-34: Special 14" F to F Taps

Opt-55: Oxygen Cleaned

Unloader Specifications

Self contained back pressure regulator. 1/4" Size, NPT connections. Available with Bronze or SST body and spring chamber. S2 Trim - SST metal seat and diaphragm. 1/4" NPT bug screen vent in outlet connection. Range springs from 2 to 400 psig. (See Position 13 on the coder.) See Position 14 on coder for selection of materials for connecting tubing, orifice and filters.

ABBREVIATIONS					
FK = Fluorosilicone	NBR = Buna-N	PTFE = Polytetrafluoroethylene			
FKM = Fluorocarbon	RTFE = Brz-fill TFE	V-TFE = Virgin TFE			
EPR = Ethylene Propylene	GF-TFE = Glass-fill TFE	CTFE = Chlorotrifluoroethylene			
BC = Neoprene	PA = PolyAll				

MATERIAL SPECIFICATIONS

Body

DI - ASTM A395

CS – ASTM A216, Grade WCB.

Alternate ASTM A352 Grade LCC

BRZ - ASTM B62, Alloy 83600,

SST - ASTM A351, Grade CF3M.

See TABLES 1A through 1F for material specs.

Cover Dome

DI - ASTM A395

CS – ASTM A216, Grade WCB. Alternate ASTM A352 Grade LCC

BRZ – ASTM B62, Alloy 83600,

SST - ASTM A351, Grade CF3M

Metallic Trim *

Plug, Cage: 17-4PH SST, 316L SST, Nickel-Copper Alloy (Monel[†]),

PART	TRIM DESIGNATION						
PANI	P	M	S	Т			
Plug	17-4 PH SST	Monel †	316L SST	17-4 PH SST			
Guide Bearing	17-4 PH SST	Monel †	316L SST	17-4 PH SST			
Cage	316L SST	Monel †	316L SST	Monel†			
Body Bushing	17-4PH SST	Monel †	Monel†	Monel†			

Diaphragm *

Elastomeric - BC, EPR, FKM, FK, NBR, FKM+TFE.

Seat *

PolyAll, V-TFE, GF-TFE, CTFE, BC, NBR

Static Seals (See Fig. F1) *

NBR, FKM, FK, EPR - o-ring SST/TFE (1/2"-2") (DN15-50) sizes, V-TFE (2-1/2"-4") (DN65-100) sizes.

Dynamic Seals (See Fig. 1) *

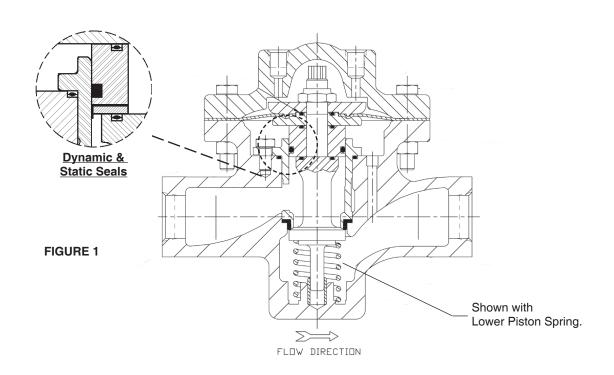
Type OR - NBR, FKM, FK, EPR - o-ring seal.

Type UC -V-TFE u-cup seal w/316L SST enegizer

- V-TFE u-cup seal w/ Elgiloy energizer

<u>Type CW</u> – TFE cap seal with o-ring energizer (o-ring material same as static seal) and GF-TFE wiper backup seal.

Painting


<u>Standard:</u> All non-corrosion resistant portions to be painted with corrosion resistant epoxy paint per Cashco Spec #S-1606.

* See Product Coder for acceptable combinations.

† MonelTM and Inconel[®] are registered trade names:

MonelTM is a mark owned by International Nickel Co.

Inconel[®] is a mark owned by International Nickel Co.

OPTION SPECIFICATIONS

OPT-30: WELD FLANGED CONNECTIONS. CS,

or SST body materials only. 1/2" – 1-1/2" (DN15–40) body sizes only (no 1-1/4" (DN32) size). Weld-on flange of same general chemistry as body.

Weld-On Flanges					
Sizes Body Material ASME Pressure Class					
1/2" - 3/4"	CS, SST	150, 300, 600			
1"	1" CS, SST 600				
Sizes Body Material ISO Pressure Class		ISO Pressure Class			
DN15-50	CS, SST	PN40 RF			
DN65-100	CS, SST	PN16, 25, 40 RF			

NOTES: 1. The body P vs. T ratings are the limiting variables for flanged end connections, unless further restricted by ASME B16.5.

2. No post-weld stress relieving performed.

OPT-31: **BSP END CONNECTIONS**. British Standard

Pipe threads per ISO 7/1; used as an alternate to NPT ends. 1/2" – 2" (DN15–50) sizes only.

OPT-34: SPECIAL 14" FACE TO FACE DIMENSION

FOR FLANGED END CONNECTIONS. Sizes 1/2" - 1", 1-1/2" & 2" only. See Opt-30 for

standard face to face dimension.

OPT-55: SPECIAL CLEANING - GOX. BRZ or SST

body materials <u>only</u>. Cleaning, assembly and packaging per Cashco Spec #S-1134, making unit suitable for Oxygen Service. **NOTE: Design Pressure Rating shall not exceed 375 psig (25.8 Barg) when body/topworks material is SST and process medium is**

oxygen.

OPT-56: SPECIAL CLEANING. Cleaning per Cashco

Spec. No. S-1542 for all body/cover dome materials. Higher cleaning level than std. commercial cleaning. NOT suitable for Oxygen

Service.

OPT-85: PRESSURE TAPS. Provides second set

of inlet and outlet 1/4" (DN8) - FNPT taps with plugs (same basic material as body) on backside of body. Includes second external sensing port tap. See Figure F2 for details on tap location for both STD. and Opt-85.

TECHNICAL SPECIFICATIONS APPENDIX INDEX

TABLE	<u>TITLE</u>	PAGE
1A	DI – Press vs Temp vs End Conn Ratings	5
1B	BRZ – Press vs Temp vs End Conn Ratings	6
1C	CS - Press vs Temp vs End Conn Ratings - Design Inlet	7
	Design Outlet	
1E	SST - Press vs Temp vs End Conn Ratings - Design Inlet	8
1F	Design Outlet	8
2	Max Pressure Drop - Comp Seat	9
	Max Pressure Drop - Dynamic Seal Design	
4	Max Pressure Drop - Basic Trim Mat'ls	9
5	Temperature Limits – Elastomer Mat'ls	10
6	Max Diaphragm Rating	10
7	Reducer Max Capacity - Plug Wide Open	11
8	Pressure Loading System Tubing & Fitting Maximum	
	Containment Pressure Process or Auxiliary Fluids	11
9	Reducer Lower Piston Spring range	11
10	Inboard Leakage Ratings	12
11	Reducer Recommended Velocity Limits	12
12	Max Recommended Noise Limits	12
13	Recommended Internal Materials - Gases	13
	Supplement - Chemical Resistance	13
14	ISR Effect	14
FIGURE		
F1	Dynamic/Static Seals	14
F2	Location of Body Taps	15

TABLE 1A <u>DI – DUCTILE IRON</u> BODY / TOPWORKS MATERIAL SPECIFICATIONS DESIGN PRESSURE vs. TEMPERATURE vs. END CONNECTION RATINGS

(To ASME B16.1 for Flanged and B16.4 for NPT Connections per Cast Iron Rating)

Material S	pecifications		End Connection	n – Inlet & Outlet		
(Body /	Topworks)		Containment Pressure – psig			
Description	ASTM	Temperature °F	re °F End Connection – Pressure Class			
(Abbr.) No.	No.		NPT	125# FF	250# RF	
	-20° to +150°	400	200	500		
		200°	370	190	460	
		225°	355	180	440	
		250°	340	175	415	
		300°	310	165	375	
		350°	300	150	335	
		400°	250	140	290	
		406°	250	140	290	
DI/DI (Note 1)	A395/ A395		Containment Pressure – Barg			
(Note 1)	7000	Temperature °C	End Connection – Pressure Class			
			NPT	125# FF	250# RF	
		-29° to +65°	27.6	13.8	34 .5	
		107	24.5	12.5	30.2	
		120°	23.4	12.1	28.7	
		150°	21.2	11.2	25.7	
		177°	19.2	10.6	23.8	
		204°	17.5	9.6	20.3	

NOTE 1: Whenever body and topworks materials are mixed, the P vs. T ratings that should be applied are those which are <u>lowest</u> of the two materials.

Example: CS body, DI topworks; NPT end connections, 200°F temperature.

Because the topworks is not "end flanged", use DI limits of "400 PSIG CWP 370/200F" from above to compare to CS limits from Table 1C value. The <u>DI limits are lower</u>, so ratings from Table 1A <u>MUST</u> be used as the limits.

TABLE 1B BRZ – BRONZE BODY / TOPWORKS MATERIAL SPECIFICATIONS

DESIGN PRESSURE vs. TEMPERATURE vs. END CONNECTION RATINGS (Per ASME B16.24 for Flanged and B16.15 for NPT Connections)

	ecifications opworks)		End Connection –	Inlet & Outlet	
			Containment Pressure –psig F End Connection – Pressure Class		
Description (Abbr.)	ASTM No.	Temperature °F			
		Ī	NPT	150# FF	300# FF
		-50° to +150° *	700 † / 500	225	500
		175°	390	220	480
		200°	385	210	465
		225°	375	205	445
	B62,	250°	365	195	425
		300°	335	180	390
		350°	300	165	350
		400°	250	150	315
BRZ/BRZ		406°	250	150	315
(Note 1)	Alloy C83600/B62, Alloy C83600		Containment Pressure – Barg		
	Alloy Goodo	Temperature °C	End Connection – Pressure Class		
		Ī	NPT	150# FF	300# FF
		-46° to +65° *	48.3 † / 34.5	15.5	34.5
		107°	25.8	14.0	30.8
		120°	25.1	13.5	29.5
		150°	23.0	12.4	26.8
		177°	20.4	11.3	24.0
		204°	17.8	10.3	21.4

[†] Use 700 psig (48.2 Barg) inlet / 500 psig (34.4 Barg) outlet at 150°F as maximum limits.

NOTE 1: Whenever body and topworks materials are mixed, the P vs. T ratings that should be applied are those which are <u>lowest</u> of the two materials.

Example: BRZ body, DI topworks; NPT end connections, ambient temperature.

Because the topworks is not "end flanged", use the DI limits of "400 PSIG CWP 370/200F" from TABLE 1A to compare to above TABLE 1B values. The <u>DI limits are lower</u>, so ratings from TABLE 1A <u>MUST</u> be used as the limits.

Body Material Specifications

Cast Steel A216 Gr. WCB or Steel Weldment A216 Gr. WCB w/ forged flanges A105

Alternate Material: Cast Steel A352 Gr. LCC or Steel Weldment A352 Gr. LCC w/ forged flanges A350 Gr. LF6 Class 2

Topworks Material Specifications

Cast Steel A216 Gr. WCB

Alternate Material: Cast Steel A352 Gr. LCC

DESIGN PRESSURE vs. TEMPERATURE vs. END CONNECTION RATINGS

(Per ASME B16.5 and B16.34) See NOTE 1

TABLE 1C DESIGN <u>INLET</u> PRESSURE in PSIG (BARG)						
DESIGN TEMP.	EN	ID CONNECTION	ONS			
RANGE: Deg F (Deg C) **	NPT, BSP 600# 150# 300#					
-20 to +100 (-29 to +38)	1480 (102.1)	1480 (102.1)	285 (19.6)	740 (51.1)		
-20 to +200 (-29 to +93)						
-20 to +300 (-29 to +149)	1310 (90.3)	1310 (90.3)	230 (15.8)	655 (45.1)		
-20 to +400 1265 1265 200 635 (-29 to +204) (87.3) (87.3) (13.7) (43.6)						
** Alternate Mat'l: A	STM 352 Gr. LC0	Minimum Ten	nperature	-50 °F		

(-46 °C).

TABLE 1D DESIGN <u>OUTLET</u> PRESSURE in PSIG (BARG)						
DESIGN TEMP.	END	CONNECTION	S			
RANGE: Deg F (Deg C) **	NPT, BSP, 600# 150# 300#					
-20 to +100 (-29 to +38)	750 (51.7)	285 (19.6)	740 (51.1)			
-20 to +200 (-29 to +93)	680 (47.1)	260 (17.9)	680 (47.1)			
-20 to +300 655 230 655 (-29 to +149) (45.1) (15.8) (45.1)						
-20 to +400 635 200 635 (-29 to +204) (43.6) (13.7) (43.8)						
** Alternate Mat'l: AS °F (-46 °C).	STM 352 Gr. LCC N	Minimum Temp	erature -50			

NOTE 1: These pressure ratings may be further derated by limitations through the Pressure Equipment Directive (2014/68/EU). Whenever body and topworks are mixed, the P vs. T ratings that should be applied are those which are lowest for the two materials.

Example: 600 lb. RF flanged steel body, full support diaphragm construction, at 200 deg F maximum temp would have a preliminary inlet to 3375 psig and outlet to 1350 psig, but if fitted with a ductile iron topworks pressure rating is only 370 psig. Must derate both the inlet and outlet to 370 psig. (Note: Topworks pressure rating, same as NPT design outlet pressure rating for the selected topworks material and diaphragm type.)

Body Material Specifications

Cast Stainless Steel A351 Gr.CF3M or Stainless Steel Weldment A315 Gr. CF3M w/ forged flanges A182 Gr. F 316L

Topworks Material Specifications Cast Stainless Steel A351 Gr.CF3M

DESIGN PRESSURE vs. TEMPERATURE vs END CONNECTION RATINGS (Per ASME B16.5 and B16.34) See NOTE 1

TABLE 1E DESIGN <u>INLET</u> PRESSURE in PSIG (BARG)						
DESIGN TEMP.	E	ND CONNECTI	IONS			
RANGE: Deg F (Deg C)	NPT, BSP 600#, 150# 300#					
-50 to +100 (-46 to +38)	1440 (99.3)	1440 (99.3)	275 (19.0)	720 (49.6)		
-20 to +200 (-29 to +93)	1240 1240 235 620 (86.1) (86.1) (16.5) (43.0)					
-20 to +300 1120 1120 215 560 (-29 to +149) (77.1) (77.1) (14.8) (38.6)						
-20 to +400 (-29 to +204)	1025 (70.9)	1025 (70.9)	195 (13.6)	515 (35.5)		

TABLE 1F DESIGN <u>OUTLET</u> PRESSURE in PSIG (BARG)					
DESIGN TEMP.	END C	ONNECTION	S		
RANGE: Deg F	NPT, BSP,				
(Deg C)	600# 150# 300#				
-50 to +100	625	275	625		
(-46 to +38)	(43.0)	(19.0)	(43.0)		
-20 to +200	620	235	620		
(-29 to +93)	(42.3)	(16.5)	(42.3)		
-20 to +300	560	215	560		
(-29 to +149)	(38.6)	(14.8)	(38.6)		
-20 to +400	515	195	515		
(-29 to +204)	(35.5)	(13.6)	(35.5)		

NOTE 1: These pressure ratings may be further derated by limitations through the Pressure Equipment Directive (2014/68/EU). Whenever body and topworks are mixed, the P vs. T ratings that should be applied are those which are lowest for the two materials. **Example:** 300 lb. RF flanged SST body, standard diaphragm construction, at 200 deg F maximum temp would have a preliminary inlet and outlet to 620 psig, but if fitted with a ductile iron topworks pressure rating is only 400 psig. (Note: Topworks pressure rating, same as NPT design outlet pressure rating for the selected topworks material and diaphragm type.)

The ratings are the same as above, if substitute steel topwork material.

300# Flanges are derated due to the bolting for these products.

TABLE 2 MAXIMUM PRESSURE DROP FOR COMPOSITION SEATS

Body S	Pi-o	Max. Pressure Drop - psid (Bard)				
Body	size		Seat Material			
in	(DN)	BC, NBR, POL	YALL	GF-TF	E	
1/2" – 1"	(15-25)	750	(51.7)	1000	(68.9)	
1-1/4" — 1-1/2"	(32-40)	600	(41.3)	900	(62.0)	
2"	(50)	600	(41.3)	750	(51.7)	
2-1/2" - 4"	(65-100)	600	(41.3)	750	(51.7)	
		V-TFE		CTFE		
1/2" – 1"	(15-25)	600	(41.3)	3000	(206.9)	
1-1/4" – 1-1/2"	(32-40)	600	(41.3)	3000 (206.9)		
2"	(50)	600	(41.3)	2000	(137.9)	
2-1/2" - 4"	(65-100)	450	(31.0)	1500	(103.4)	

TABLE 3
MAXIMUM PRESSURE DROP FOR
DYNAMIC SEAL DESIGNS

Body Size		Max. Pressure Drop - psid (Bard)								
Body	Size		Dynamic Seal Design							
in	(DN)	"OR" – O-RING		"OR" – O-RING "CW" – TFE CAP w/WIPER		"UC" - U-	-CUP			
1/2" – 1"	(15- 25)	750	(51.7)	600	(41.3)	3000	(206.9)			
1-1/4" - 1-1/2"	(32- 40)	750	(51.7)	600	(41.3)	3000	(206.9)			
2"	(50)	750	(51.7)	600	(41.3)	3000	(206.9)			
2-1/2" - 4"	(65- 100)	750	(51.7)	600	(41.3)	3000	(206.9)			

TABLE 4
MAXIMUM PRESSURE DROP FOR
BASIC TRIM MATERIAL

Body Size			ı	Max Press	ure Drop	- psid	(Bard)		
			Basic Trim Material						
in	(DN)	"P" – 17·	"P" – 17-4PH SST		6L SST	"M" – Monel		"T" – Hybrid *	
1/2" - 2"	(15-50)	3000	(206.9)	800	(55.1)	1500	(103.4)	3000	(206.9)
2-1/2" – 4"	(65-100)	3000	(206.9)	800	(55.1)	1500	(103.4)	3000	(206.9)
* 17-4PH	* 17-4PH SST plug & piston, Monel cage.								

TABLE 5 TEMPERATURE LIMITS FOR ELASTOMERIC MATERIALS

	Elastomer			cimum	T Mi	T Minimum	
	ID	Description	°F	(°C)	°F	(°C)	
	PolyAll	225°	(107°)	-60°	(-51°)		
l o	GF-TFE	Glass-filled Polytetrafluorethylene	425°	(218°)	-325°	(-198°)	
Seats	V-TFE	Virgin TFE	400°	(205°)	-325°	(-198°)	
S	CTFE	Chlorotrifluoroethylene TFE	300°	148°)	-325°	(-198°)	
	BC	Neoprene	225°	(107°)	-35°	(-37°)	
	NBR	Buna-N	320°	(160°)	-40°	(-40°)	
	BC	Neoprene (Polychloroprene)	250°	(121°)	-65°	(-53°)	
ms	EPR	Ethylene Propylene	300°	(148°)	-40°	(-40°)	
rag	FK	Fluorosilicone	350°	(177°)	-65°	(-54°)	
hd	FKM	Fluorocarbon Elastomer	400°	(205°)	0°	(-17°)	
Diaphragms	NBR	Buna-N (Nitrile)	250°	(121°)	-70°	(-56°)	
	FKM+TFE	Fluorocarbon Elastomer + TFE	400°	(205°)	0°	(-17°)	
	V-TFE	Virgin TFE	400°	(205°)	-325°	(-198°)	
Seals	EPR	Ethylene Propylene	300°	(148°)	-40°	(-40°)	
Se	FK	Fluorosilicone	350°	(177°)	-65°	(-54°)	
tic	FKM	Fluorocarbon Elastomer	400°	(205°)	-20°	(-28°)	
Static	NBR	Buna-N	212°	(100°)	-40°	(-40°)	
	SST/TFE	301/302 SST U-cup / TFE	400°	(205°)	-325°	(-198°)	
<u>s</u>	"CW" – EPR/TFE	TFE Cap Seal, EPR O-ring, GF-TFE Wiper	300°	(148°)	-40°	(-40°)	
Seals	"CW" – NBR/TFE	TFE Cap Seal, NBR O-ring, GF-TFE Wiper	212°	(100°)	-40°	(-40°)	
S	"CW" – FK/TFE	TFE Cap Seal, FK O-ring, GF-TFE Wiper	350°	(177°)	-40°	(-40°)	
Dynamic	"CW" – FKM/TFE	TFE Cap Seal, FKM O-ring, GF-TFE Wiper	400°	(205°)	-20°	(-28°)	
yng	SST/TFE	301/302 SST U-cup / TFE	400°	(205°)	-325°	(-198°)	
۵	ELG/TFE	Elgiloy / TFE U-cup	400°	(205°)	-325°	(-198°)	

ABBREVIATIONS						
FK = Fluorosilicone	PTFE = Polytetrafluoroethylene	BC = Neoprene				
FKM = Fluorocarbon Elastomer	V-TFE = Virgin TFE	GF-TFE = Glass-fill TFE	ELG = Elgiloy			
EPR = Ethylene Propylene	CTFE = Chlorotrifluoroethylene TFE					

TABLE 6
MAXIMUM DIAPHRAGM RATING psig (Barg) *

NOTE: The below ratings may be further "derated" by limitations through the Pressure Equipment Directive (2014/68/EU).

	BODY SIZE 1/2"-2"	BODY SIZE 2-1/2"-4"
Diaphragm	(DN15-50)	(DN65-100)
Material	STD DIAPHRAGM	STD DIAPHRAGM
	CONSTRUCTION	CONSTRUCTION
BC. EPR	1250	800
BO, EFR	(86.1)	(55.1)
NBR	450	300
NDA	(31.0)	(20.6)
FKM. FKM+TFE. FK	700	550
I KIVI, I KIVI+I FE, FK	(48.2)	(37.9)
* Maximum pressure setpoint	of Pressure Safety Valve or F	Rupture disk should not exceed

^{*} Maximum pressure setpoint of Pressure Safety Valve or Rupture disk should not exceed 1.5 times tabulated value to prevent irreversible diaphragm mechanical damage or rupture.

TABLE 7 **REDUCER MAXIMUM CAPACITY WITH PLUG WIDE-OPEN**

Body	Size	Full Port Max Capacity		
in	(DN)	Cv	Kv	
1/2"	(15)	4.0	3.4	
3/4"	(20)	8.0	6.9	
1"	(25)	15	13	
1-1/4"	(32)	23	20	
1-1/2"	(40)	30	26	
2"	(50)	60	52	
2-1/2"	(65)	90	78	
3"	(80)	120	104	
4"	(100)	220	190	

NOTE: The above Cv factors may be used for sizing of safety relief valves or rupture discs.

TABLE 8 PRESSURE LOADING SYSTEMS MAXIMUM CONTAINMENT PRESSURE PROCESS OR AUXILIARY GASES

TUBE	FITTINGS	PRESSURE		s. TEMPE	RATURE
		psig	(Barg)	°F	(°C)
	BR	1400	(96.5)	-325 to +100	(-198 to +37.7)
CU*		1140	(78.6)	200	(93.3)
		1100	(75.8)	300	(148.8)
		700	(48.2)	400	(204.4)
SST^	SST	3600	(248.2)	-325 to +400	(-198 to +204.4)

^{*1/4&}quot; O.D. X 0.030" Wall Thickness

Application Notes:

- 1. Consult Factory for T1<0° F.
- 2. Use Heat Exchange "coils" when loading fluid (process, auxiliary) T1>140°F
- 3. Use Heat Exchange "coils" when T1<0°F
- 4. Other components of a given loading or piloting system may have lower limits of pressure or temperature than the tubing &and fittings.

TABLE 9 **LOWER PISTON SPRING RANGES**

Lower Piston Spring Range psig	Application Notes
N/A	All Unloader Range Springs
1–2	Required when Unloader Range Spring is 2 - 30 psig
2–5	For Unloader Range Springs 10 - 360 psig

- **NOTES:** 1. The <u>2–5 psig</u> lower piston spring is
 - · most commonly selected,
 - recommended for GF-TFE and CTFE seats,
 - recommended for tighter shutoff; i.e. lowest inboard leakage.
 - 3. Lower spring material matches main metallic trim in corrosion resistance.

^{^1/4&}quot; O.D. X 0.028" Wall Thickness

TABLE 10 INBOARD LEAKAGE RATINGS * Per ANSI/FCI 70-2

	Dynamic Seal		
Seat Material	O-Ring	Dynamic Seals Except O-Ring	
CTFE, GF-TFE, and V-TFE	IV	IV	
BC, NBR, PolyAll	VI	IV	

^{*}Inboard leak rates are the composite leakage of the seat leakage + dynamic seal

TABLE 11 REDUCER RECOMMENDED VELOCITY LIMITS

Application Fluid	Valve		Valve Body Outlet		Downstream Pipe		
	Type Size						Units
	R	, , , , , , , , , , , , , , , , , , ,	Range	Recommend	Max.	Recommend	Max.
Gas	PRV	1/2"-1" 1-1/4"-2"	0.20 0.25	0.40 0.45	0.15 0.20	0.30 0.30	
		2-1/2"-6"	0.30	0.50	0.25	0.35	Mach #
	\searrow	8"-12"	-	-	0.25	0.40	

NOTES:
1. If valve outlet exceeds recommended limits, then can use external sensing to reach maximum limits.
2. On gas service, a pilot operated prv can work with a outlet Mach = 0.75.

TABLE 12 MAXIMUM RECOMMENDED NOISE LIMITS *

Criteria	Body Sizes		Noise Level - dBA	
Criteria	in	(DN)	Noise Level - dbA	
Per OSHA Regs. w/noise attenuation methods incorporated.	All	All	85-95	
Sch. 80 pipe, no insulation.	1/2"–2"	(15-50)	95	
Std. wt. pipe, no insulation.	2-1/2"-4"	(65-100)	98	
* Consult Factory for ALL applications exceeding 97 dBA noise prediction.				

Schemes To Reduce High Noise -

- Staging using two separate throttling valves in series.
- <u>dB Plates</u> using 1, 2 or 3-stage dB Plate cartridges downstream of a throttling valve.
- <u>Paralleling</u> using two separate throttling valves in parallel.
- <u>Combinations</u> using multiple methods of above three possibilities.

leakage, considered as a single inboard leakage value.

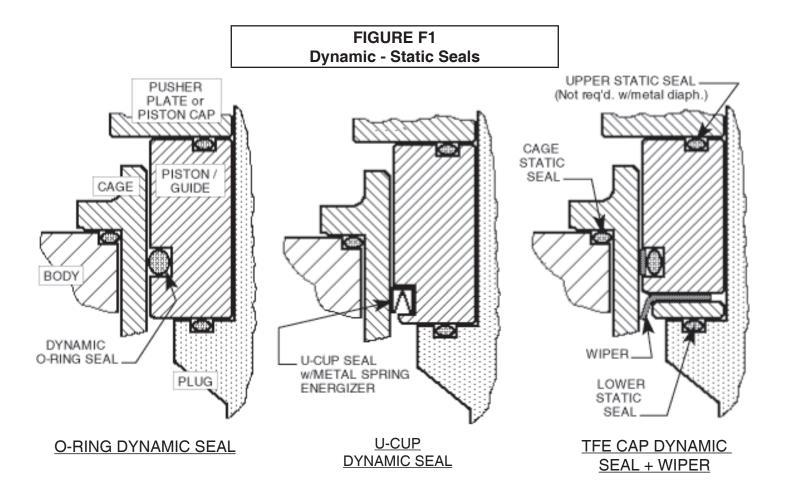
TABLE 13
RECOMMENDED INTERNAL MATERIALS
For P_{max}, Reference Individual Technical Bulletins

	GASES						
es	Fluid	Tmax °F	Tmin °F	Trim			
Gases	Atmospheric Gases -	225°	-60°	M7			
	O ₂ (GOX)	350°	-65°	M9			
j je i	N ₂ (GN ₂), Air, Argon CO ₂ (dry)	180°	-60°	P2			
ldso		350°	-65°	P8			
Į į	CO ₂ (dry)		-40°	P6			
<	CO ₂ (wet)	180°	-40°	P5			

SUPPLEMENT for TABLE 13 CHEMICAL RESISTANCE

General Statement: Statements located within this technical bulletin concerning suitability of fluids with TFE materials are general statements, and should not be construed as recommendations. Any statements of suitability are the result of a compilation of various sources of information based on experience, tests, and published technical literature. No guarantee or warranty is in anyway implied for a given particular service or application.

<u>Additional Reference</u>: For an inclusive listing covering a broader range of service application fluids, reference "Handbook of Corrosion Resistant Piping", P.A. Schweitzer, Industrial Press; or "Compass Corrosion Guide", 2nd Edition, K.M. Pruett, Compass Publications. This publication will include information based on the following fluid variables:


- 1. Solution concentration
- 2. Pressure
- 3. Temperature

Inverse Sympathetic Ratio (ISR) - effect on regulator performance.

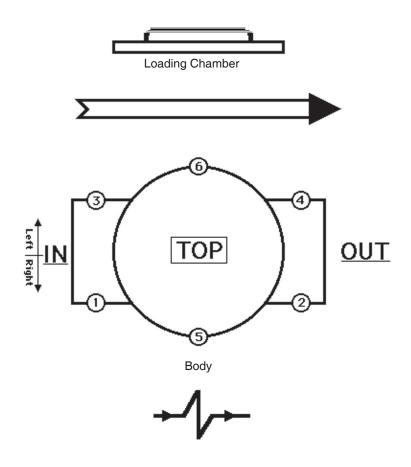
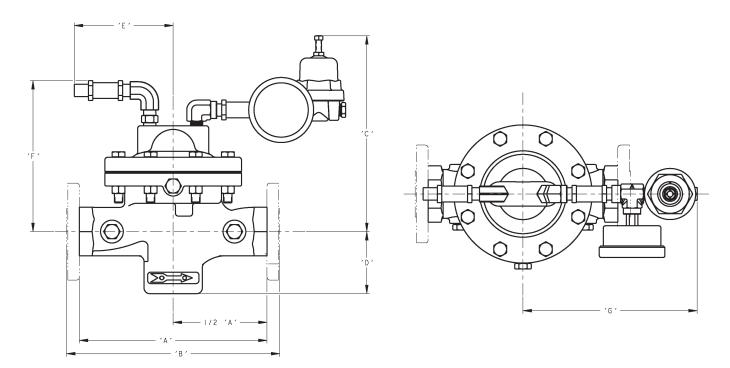

ALR-1 regulators utilize a top and bottom guide, "flow to open" trim design. The top guide also acts as a "balancing" piston to oppose the forces generated by the inlet pressure acting on the valve plug. A small residual imbalance between the piston and the valve plug helps to reduce seat leakage at high differential pressures across the seat joint. This same imbalance produces and Inverse Sympathetic Ratio, ISR effect, as the delta pressure across the seat (DP) changes. The magnitude of the ISR effect is given in Table -14.

TABLE 14				
Body	Size	ALR-1		
in	(DN)	ALR-1		
1/2", 3/4", 1"	(15,20,25)	0.03		
1-1/4", 1-1/2"	(32,40)	0.04		
2"	(50)	0.02		
2-1/2", 3", 4"	(65,80, 100)	0.054		

In a similar manner the ISR effect will produce an offset between the loading pressure, PL, and the pressure setpoint of a dome loaded regulator. For example, a 4" ALR-1 with an inlet pressure, P1 of 300 psig and an outlet pressure, P2 of 50 psig would require a loading pressure, PL = $(P1 - P2) \times ISR + P2 = (300-50) \times 0.054 + 50 = 63.5$ psig. In addition, if the DP changes, then a setpoint offset would be observed with a constant loading pressure.


FIGURE F2 Location of BODY TAPS

Flow To Open Direction

Location	Description	Opt. No.	NPT - Size	Body Mat'l.
1 & 2	Inlet & Outlet – Right	STD	1/4"	DI, CS & SST
1, 2 & 3	Inlet & Outlet – Right	STD	1/4"	BRZ
5	External Sensing – Right	STD	1/4"	DI, BRZ, CS & SST
1, 2, 3 & 4	Inlet & Outlet – Right Inlet & Outlet – Left	85	1/4"	DI, BRZ, CS & SST
5 & 6	Double External Sensing	85	1/4"	DI, BRZ, CS & SST

DIMENSION and WEIGHTS

ENGLISH UNITS (in) (lbs)

BODY SIZE END BODY 1/2" DIMEN. 1-1/4" & CONN. MAT'L 3/4 3" 2-1/2 4" 1-1/2" & 1" DI, BRZ 6.00 9.88 9.88 NPT Α CS, SST 8.25 9.88 9.75 125# FF DI 10.88 11.75 13.88 250# RF DI 11.50 12.50 14.50 150# FF BRZ * 9.63 11.50 \ 11.50 10.88 11.75 13.88 300# FF BRZ ** 9.63 11.50 √ 11.50 11.50 12.15 14.50 150# RF CS, SST 10.75 12.38 √ 10.00 10.88 11.75 13.88 В CS, SST 14.00 √ 150# RF ‡ 14.00 14.00 300# RF CS, SST 10.75 12.38 $\sqrt{}$ 10.50 11.50 12.50 14.50 CS, SST 14.00 √ 300# RF ‡ 14.00 14.00 600# RF CS, SST 10.75 12.38 √ 11.25 12.25 13.25 15.50 600# RF ‡ CS, SST 14.00 14.00 √ 14.00 С 11.25 ALL ALL 8.75 14.50 10.63 13.00 14.50 D ALL ALL 2.84 3.69 4.00 5.25 5.75 7.00 5.50 Е ALL 5.50 ALL 4.38 4.88 5.00 5.50 F ALL ALL 6.50 7.38 8.13 9.88 11.38 11.38 G ALL ALL 8.00 6.75 6.75 6.81 7.25 11.00 н ALL ALL 6.50 8.00 9.50 11.00 wo/ ALL 23 32 48 Flanges WEIGHT w/ Flanges ALL 28 42 61 90 155 164

METRIC LINITS (mm) (kg)

METRIC UNITS (mm) (kg)								
		В	ODY S	ZE				
END CONN.	DN15, DN20 & DN25	DN32 & DN40 √	DN50	DN65	DN80	DN100		
NPT	152	251	251	ı	ı	_		
INFI	209	251	248	-	-	_		
125# FF	-	-	-	276	298	352		
250# RF	-	-	-	292	318	368		
150# FF	246	292 √	292	276	298	352		
300# FF	246	292 √	292	292	309	368		
150# RF	273	314 √	254	276	298	352		
150# RF ‡	356	356 √	356	-	-	_		
300# RF	273	314 √	267	292	318	368		
300# RF ‡	356	356 √	356	-	1	_		
600# RF	273	314 √	286	311	336	394		
600# RF ‡	356	356 √	356	-	_	_		
ALL	222	270	286	330	368	368		
ALL	72	94	102	133	146	178		
ALL	112	124	127	140	140	140		
ALL	165	188	207	251	290	290		
ALL	197	203	203	173	171	171		
ALL	165	184	203	241	279	279		
wo/ Flanges	10	14	22	-	-	_		
w/ Flanges	12	19	28	41	70	74		

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such product at any time without notice.

Cashco does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Cashco product remains solely with the purchaser.

^{**} Flanged BRZ bodies available in sizes 1", 1-1/2", 2", 2-1/2", 3", & 4" ONLY.
√ Flange Connection not available for 1-1/4" size.
‡ Opt-34: Special 14" F to F Flange dimensions, CS and SST body material only.
Consult Factory for dimensions of ISO DIN Flanged units. (PN16, PN25, PN40)

MODEL ALR-1 PRODUCT CODER 01/09/23

An "X" in POS 12 followed by a 5-digit control number overrides remaining selections.

POS POS 12 13

14

POS 15 16

POSITION 3 - SIZES					
Size)	STD			
in	(DN)	CODE			
1/2"	(15)	4			
3/4"	(20)	5			
1"	(25)	6			
1-1/4"	(32)	7			
1-1/2"	(40)	8			
2"	(50)	9			
2-1/2"	(65)	Α			
3"	(80)	В			
4"	(100)	С			

POSITION 5 - BODY/COVER DOME MATERIALS					
Materials	CODE	Materials	CODE		
DI/DI	1	LCC/LCC	6		
BRZ/DI	2	LCC/SST	8		
BRZ/BRZ	В	SST/DI	7		
CS/DI	4	SST/CS	9		
CS/CS	5	SST/SST	Α		

	POSITION 10 - END CONNECTIONS / ASME							
Size	Material	Method	End Conn	CODE	End Conn	CODE	End Conn	CODE
1/2" - 2"	ALL	_	NPT	1	-	_	_	_
2-1/2" - 4"	DI	Integral	125#FF	2	250#RF	3	-	_
1", 1-1/2" - 4"	BRZ	Integral	150#FF	6	300#FF	7	-	_
1/2" - 3/4"	CS,SST	Opt-30	150#RF	4	300#RF	5	600# RF	8
1" - 4"	CS-SST	Integral *	150#hF		300#NF	٦	**	L°
1/2" - 2"	ALL	Opt-31	BSP	Р	_	_	-	_
1/2" - 2" (14" F to F)	CS, SST	Opt-34 *	150#RF	V	300#RF	W	600#RF	Υ
	END (CONNECTI	ONS FOR	ISO DIN	I FLANGES			
DN15-25, 40, 50			PN40 F	F - will	mate with PI	N16, 25	and 40	J
DN65-100	BRZ	Integral	PN16 FF	К	PN25 FF	L	PN40 FF	M
DN15-25, 40, 50	CS, SST	Opt-30	PN40 RF - will mate with PN16, 25 and 40 D					
DN65-100	CS, SST	Integral	PN16 RF	Α	PN25 RF	С	PN40 RF	G
* Flanges Not Available for 1-1/4" (DN32) size. ** 1" size w/ 600# RF CS,or SST has weld-on flanges Opt-30								

POSITION 11 - LOWER SPRING				
Spring Range psig	CODE			
No Spring	0			
2-5	3			
1-2 *	5			
* Use with Unloader Spring Range 2 - 30 psig.				

POSITION 13 - UNLOADER 1/4" NPT, S2 TRIM

Spring Range

psig

2 - 30

10 - 50

40 - 90

40 - 125

100 - 175

170 - 400

Body / Spring Chamber

Material

SST

2

3

4

5

6

BRZ

В

С

D

Ε

F

G

POSITION 12 - SENSING CONFIGURATION (FLOW TO OPEN)				
Option	CODE			
Internal	1			
External	2			
For Special Construction Contact Cashco for Special Code	х			

POSITION 14 - FILTER-ORIFICE / FITTING				
Filter - Orifice / Fitting	CODE			
Material	CODE			
Brass / BR with BRZ Unloader	В			
SST / SST with SST Unloader	s			
Optional Brass / SST Fitting over Brass/ BR Fitting above on Brass	н			

UnLoader. * See Application Notes on page 11 Table 8.

	POSITION 6 & 7 - DIAPHRAGM, SEAL & SEAT MATERIALS						
Trim	Seat (#)	Diaphragm	Static Seal	Dynamic Seal	CODE		
	PA	BC	NBR	O-ring	P1		
	PA / (BC)	BC	NBR	SST/TFE u-cup	P2 / (PU)		
	CTFE	BC	NBR	SST/TFE u-cup	P3		
	PA	EPR	EPR	O-ring	P4		
	PA	NBR	NBR	O-ring	P5		
	PA/ (NBR)	NBR	NBR	SST/TFE u-cup	P6 / (PW)		
	PA	FK	FK	SST/TFE u-cup	P7 ‡		
17 ADU	GF-TFE	FK	FK	SST/TFE u-cup	P8 ‡		
17-4PH SST	V-TFE	FK	FK	SST/TFE u-cup	P9 ‡		
"P"	PA	FKM	FKM	O-ring	PA		
'	PA	FKM	FKM	SST/TFE u-cup	PB		
	GF-TFE	FKM	FKM	O-ring	PC		
	GF-TFE	FKM	FKM	SST/TFE u-cup	PD		
	V-TFE	FKM + TFE	SST/TFE u-cup √	SST/TFE u-cup	PE		
	PA / (NBR)	NBR	NBR	TFE+NBR GFTFE CW	PH / (PY)		
	PA	EPR	EPR	TFE+EPR GFTFE CW	PJ		
	PA	FK	FK	TFE+FK GFTFE CW	PK		
	GF-TFE	FKM	FKM	TFE+FKM GFTFE CW	PL		
	PA	FK	FK	SST/TFE u-cup ‡‡	M7 ‡		
	V-TFE	FK	FK	SST/TFE u-cup	M9 ‡		
Monel	V-TFE	FKM-TFE	SST/TFE u-cup √	SST/TFE u-cup	ME		
"M"	PA / (NBR)	NBR	NBR	TFE+NBR GFTFE CW	MH / (MY)		
l IVI	PA	EPR	EPR	TFE+EPR GFTFE CW	MJ		
	PA	FK	FK	TFE+FK GFTFE CW	MK		
	GF-TFE	FKM	FKM	TFE+FKM GFTFE CW	ML		
	PA	FK	FK	SST/TFE u-cup	S7 ‡		
	V-TFE	FK	FK	SST/TFE u-cup	S9 ‡		
	PA / (NBR)	NBR	NBR	TFE+NBR GFTFE CW	SH / (SY)		
316L SST	PA	EPR	EPR	TFE+EPR GFTFE CW	SJ		
"S"	PA	FK	FK	TFE+FK GFTFE CW	SK		
	GF-TFE	FKM	FKM	TFE+FKM GFTFE CW	SL		
	NBR	NBR	NBR	SST/TFE u-cup	SW		
	PA	FK	FK	SST/TFE u-cup ‡‡	T7 ‡		
17-4PH/	V-TFE	FK	FK	SST/TFE u-cup	T9 ‡		
Monel/	PA / (NBR)	NBR	NBR	TFE+NBR GFTFE CW	TH/(TY)		
17-4PH	PA	EPR	EPR	TFE+EPR GFTFE CW	TJ		
"T"	PA	FK	FK	TFE+FK GFTFE CW	TK		
	GF-TFE	FKM	FKM	TFE+FKM GFTFE CW	TL		
‡‡ For G	‡‡ For GOX service, PA seats allowed in BRZ Bodies w/ trim materials "M" or "T" only.						

‡ For Low Ambient Temperatures (See TABLE 5 & 13 for Min. Temperatures).

 $[\]sqrt{\,}$ Sizes 2-1/2"-4" use V-TFE static seal. (#) BC and NBR Seat material not available for 2-1/2" size.

POSITION 15 - BODY OPTIONS	Option	CODE
No Option		0
Second "Set" of 1/4" (DN8) FNPT Pressure Taps & Plugs	-85	Т

POSITION 16 - CERTIFICATE OPTIONS	Option	CODE
No Option	_	0
SPECIAL CLEANING: Per Spec #S-1134. W/ properly selected mat'ls, Suitable for Oxygen Service. BRZ or SST body material.	-55	М
SPECIAL CLEANING: Per Cashco Spec #S-1542.	-56	N

* For information on ATEX see pages 16 & 17 on the IOM.

Cashco P.O. Box 6 Ellsworth, KS 67439-0006 PH (785) 472-4461 Fax. # (785) 472-3539 www.cashco.com email: sales@cashco.com Printed in U.S.A. ALR-1-TB Cashco GmbH Handwerkerstrasse 15 15366 Hoppegarten, Germany PH +49 3342 30968 0 Fax. No. +49 3342 30968 29 www.cashco.com email: germany@cashco.com

Cashco do Brasil, Ltda. Al. Venus, 340 Indaiatuba - Sao Paulo, Brazil PH +55 11 99677 7177 Fax. No. www.cashco.com email: brazil@cashco.com